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Abstract Water is undoubtedly the vital commodity

for all living creatures and required for well-being of

the human society. The present work is based on the

surveys and chemical analyses performed on the

collected groundwater samples in a part of the Ganga

basin in order to understand the sources and evolution

of the water quality in the region. The two standard

indices such as water quality index and synthetic

pollution index for the classification of water in the

region are computed. The soil and sediment analysis

are carried out with the help of X-ray diffractometer

(XRD) for the identification of possible source of ions

in water from rock and soil weathering. The dominant

minerals which include quartz, muscovite, plagio-

clase, and orthoclase are reported in the area. The

study further utilizes the multivariate statistical tech-

niques for handling large and complex datasets in

order to get better information about the groundwater

quality. The following statistical methods such as

cluster analysis (CA), factor analysis (FA), and

principal component analysis (PCA) are applied to

handle the large datasets and to understand the latent

structure of the data. Through FA/PCAs, we have

identified a total of 3 factors in pre-monsoon and 4

factors in post-monsoon season, which are responsible

for the whole data structure. These factors explain

77.62 and 82.39 % of the total variance of the pre- and

post-monsoon datasets. On the other hand, CA

depicted the regions that have similar pollutants

origin. The average value of synthetic pollution index

of groundwater during pre-monsoon is 9.27, while

during post-monsoon, it has been recorded as 8.74. On

the other hand, the average values of water quality

index of groundwater during pre-monsoon and post-

monsoon seasons are found as 217.59 and 233.02,
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respectively. The study indicates that there occurs an

extensive urbanization with gradual vast development

of various small- and large-scale industries, which is

responsible for degradation in water quality. The

overall analysis reveals that the agricultural runoff,

waste disposal, leaching, and irrigation with waste-

water are the main causes of groundwater pollution

followed by some degree of pollution from geogenic

sources such as rock and soil weathering, confirmed

through XRD analysis.

Keywords Water quality index � XRD � Synthetic

pollution index � Ganga basin � Remote sensing and

GIS � Multivariate analysis

Introduction

In the present scenarios, many countries are facing

the problem of water scarcity, even the good quality

of drinking water is not available for the human

society (Gleick 2000). This situation is wide

spreading day by day specially in most of the

developing countries such as a country like India

where majority of population depends on the

availability of ground and surface water (Srivastava

et al. 2012b). Water pollution in developing coun-

tries increases after industrialization, unprecedented

population growth, and urbanization after the glob-

alization era, i.e., 1990 onwards (Singh et al.

2013a); consequently, groundwater is also contam-

inated and affected by many factors such as the

expansion of irrigation activities, industrialization,

and urbanization (Krishna et al. 2009; Foster et al.

2002). The groundwater quality of most of the cities

in India are now polluted and unsafe for drinking at

many locations (Singh et al. 2004, 2013b). Hence,

monitoring and conserving surface and groundwater

resources are very much required for sustainable

environment and to fulfill the freshwater demand

(Sun et al. 1992).

Remote sensing and GIS are very useful tools that

could be used for synoptic representation of different

attributes of any area (Gupta and Srivastava 2010;

Patel and Srivastava 2013; Patel et al. 2013). Land-

use/land-cover (LULC) changes quantification

through satellite remote sensing is one of the major

application, and it is important for assessing global

environmental change processes, making policies and

optimizing the use of natural resources (Srivastava

et al. 2012c). The LULC types, such as agricultural

land and urban area associated with human activities,

often affect both the surface and groundwater quality;

hence, monitoring spatiotemporal changes is essential

to understand the driving factors influencing the water

quality of an area (Merchant 1994; Wu and Segerson

1995; Srivastava et al. 2013). On the other hand,

geographic information system (GIS) is an important

tool for spatial analysis and integration of spatial and

nonspatial data to derive useful outputs (Singh et al.

2013a; Patel et al. 2011). It can be used for formulating

a simple and robust water quality pollution assessment

tool for rapid information generation and broadcasting

to water resources managers and the public (Singh

et al. 2012; Vasanthavigar et al. 2010). The concept of

water quality to categorize water according to its

degree of purity or pollution dated back to 1848

(Vidyalakshmi et al. 2013). Around the same time, the

importance of water quality to public health was

recognized in the United Kingdom (Snow 1856).

Nowadays, a number of water quality index (WQI)

methodologies have been developed to provide a

simple method for expressing the quality of water

based on the user needs (Vasanthavigar et al. 2010;

Avvannavar and Shrihari 2008) and can be used to

provide the overall summaries of water quality on a

scientific basis (Kaurish and Younos 2007).

In conjunction with remote sensing and GIS, the

application of multivariate analysis offers a detailed

understanding of water quality parameters and possi-

ble factors that influence the water quality behavior

(Srivastava et al. 2012b). The multivariate statistical

techniques such as principal component analysis

(PCA), factor analysis (FA), and cluster analysis

(CA) offer a valuable tool for reliable and effective

management of water resources (Srivastava et al.

2012a; Singh et al. 2004). Several authors use

multivariate statistical techniques to characterize and

evaluate surface and groundwater quality and have

found them very useful for studying the variations

caused by natural and anthropogenic factors (Shrestha

and Kazama 2007; Singh et al. 2005; Vega et al. 1998).

However, the multivariate techniques can give only

intimation about the geogenic contribution; the results

can be confirmed only if some more thorough analysis

such as of X-ray diffraction (XRD) is incorporated

(Singh et al. 2013a). XRD is a versatile technique that

158 Environ Geochem Health (2015) 37:157–180

123



www.manaraa.com

can be used to identify any crystalline substances, such

as most minerals and indeed many other substances

when they are present in a mixture (Moore and

Reynolds Jr 1989).

For understanding the groundwater quality, multi-

variate statistical techniques integrated with remote

sensing, GIS, water quality indices (Srivastava et al.

2012b), and XRD could be used for the identification

of the possible factor/sources that influence the water

system. The present study assessed most of the above

mentioned methodologies, by applying different valid

standard techniques such as primary data (water

quality) generation for the geologically heterogeneous

area following the standard laboratory procedure,

XRD analysis, and categorization of samples based on

the WQI, SPI, and multivariate analysis in correspon-

dence with remote sensing and GIS techniques.

Therefore, the foremost objective of this research

focuses on the utilization of different water quality

indices formulations and using them for estimating the

current pollution status of groundwater of the Gan-

getic basin and surroundings. Further, this study also

presents the current land-use/land-cover (LULC)

change pattern in the district to identify the potential

zones where most of the pollution is occurring. The

highly polluted areas are depicted using the GIS-based

maps prepared from the water quality indices. The

GIS-interpolated maps are further employed to see the

seasonality in the water quality of the area. A detailed

analysis of PCA/FA/CA is presented to uncover the

latent structure of datasets. The possible driving

factors are also studied using the XRD and satellite

datasets to appraise the groundwater quality in the area

with respect to geogenic and anthropogenic factors. At

the last, recommendation measures are suggested for

protection and restoration of the groundwater quality.

Materials and methodology

Study area

The study area (district Allahabad) is located between

24�470N and 25�470N latitudes and between 81�190E
and 82�210E longitudes covering an area of 5,246 km2

and lies in the southern part of the State in the Gangetic

plain (older and younger alluvial plain) and adjoins the

Vindhyan Plateau of India (Singh et al. 2013b). About

88 % of the annual rainfall is received during the

monsoon season. July and August are the months of

maximum rainfall. The normal annual rainfall in the

district is 975.4 mm but the variation from year to year

is appreciable. On average, there are about 48 rainy

days in a year. From about the middle of November,

the temperature begin to fall rapidly, and in January

(the coldest month), the mean daily maximum is

23.7 �C. The heat in the summer season particularly in

May and the early part of June is intense. May is

usually the hottest month of the year with the mean

daily maximum temperature at 41.8 �C and the mean

daily minimum at 26.8 �C. The hot dry and often dusty

westerly winds make the heat more intense during the

daytime especially in the Trans-Yamuna tract due to

the radiation from the stony outcrops. The relative

humidity is 70–80 % during monsoon and progres-

sively decreases in humidity (during the summers

humidity is very low, i.e., 15–20 % only). The

geographical location of the study area along with

sampling points is indicated in Fig. 1.

Soil and hydrogeological characteristics

of the study area

The soil, geomorphologic, and hydrogeological setup

impact significantly the water quality of any area.

During weathering, the dissolution of minerals adds

their own contribution to the ground or surface water

(often referred as geogenic contributions). An assess-

ment of these factors can significantly help to under-

stand the overall structure of the area. The stratigraphy

of the area is represented through Table 1. All the

thematic maps used in this study are acquired from the

Geological Survey of India (GSI) http://www.portal.

gsi.gov.in/.

Soil properties

Agro-climatic zone is a land unit in terms of major

climate, superimposed on length of growing period

(moisture availability period; FAO 1983), whereas an

agro-ecological zone is the land unit carved out of

agro-climatic zone superimposed on landform which

acts as modifier to climate and length of growing

period. The study area comes under the agro-ecolog-

ical region with alluvium derived soils in most part of

the study area except there is a small part of soil

derived from Vindhyan region (Singh et al. 2013a).

The soils of the study region are predominantly

Environ Geochem Health (2015) 37:157–180 159
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medium-textured (loamy sand) followed by fine-

textured (loamy clay). Soil drainage in the area can

be categorized as well to moderately drained. The

average pH value of the soil is 7.18, which means

slightly alkaline; the average electrical conductivity is

0.10 dS/m; the average organic carbon percent is 0.74;

Fig. 1 Geographical location of the study area with sampling stations
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the average total nitrogen is 235.87 kg/ha; the average

total potash is 218.64 kg/ha; and the average available

potassium 24.81 kg/ha. The overall condition of the

soil is quite productive in nature. The dominant soil

group is Typic Ustochrepts in the region.

Geomorphology

The region is mainly divided into two parts, i.e., the

Ganga and the Yamuna alluvial plain, and the

Vindhyan plateau. According to the Geological Sur-

vey of India 2001, commonly the following geomor-

phic features are present in the area. (a) Active

Floodplain: It is quite localized and confined only to

the river system (low relief characterized by thick

deposition of clay, kankar, sand, and gravel). (b) Older

Alluvial Plain: It is characterized by depositional and

erosional terraces found in patches along the active

plain. (c) Rocky surface (Denudational hills): These

are prominent in Trans-Yamuna area formed mainly

of quartzitic nature lies in Shankargarh, Koraon, Meja,

and Manda. The palaeo-channel and abandoned

channel are also found scattered in the region.

Denudational hills

These are the hill ranges, formed by differential

erosion and weathering, and occupy the southwestern

alignment of the area. The groundwater pollution of

this zone is also considered to be in the poor category.

The area under artificial recharge is quite considerable

particularly in Trans-Yamuna area. Entire Shankar-

garh, Koraon, Manda, Meja blocks are suitable for

artificial recharge. Construction of check dams, con-

tour bunds, and ponds is under planning in the above-

mentioned blocks. There is a need of Bori dam (type of

earth fill dam) across the small drains (nalas), which is

low cost and feasible from socioeconomic point of

view. It is also suggested to implement subsurface

dyke in Trans-Ganga area. The construction of Bori

dam, check dams, and subsurface dyke could be useful

specifically in regulating water quality in Trans-

Yamuna area.

Alluvial plains

Most of the northern part of the study area is known as

Doab region (a region lying between and reaching to

the confluence of two rivers) and covered by alluvial

plains, which are usually formed by the deposition of

soil or sediments by the River Ganga and Yamuna, or

their tributary sources. Due to high porosity and

permeability, these zones are considered good for

groundwater recharge and hence, are also very

vulnerable to groundwater pollution in comparison

with the confined aquifer zone. Water-level data of

National Hydrological Services (NHS) for the last

10 years show that 60 % of the Trans-Ganga areas are

prone to water logging while it is declining in

Bahadurpur and Chaka block.

Unconsolidated sand, silt, and clay

Northern part of the district is covered by unconsol-

idated sand, silt, and clay. Due to physical properties

Table 1 Stratigraphy of

Allahabad district
Group Formation Lithology Age Thickness

(m)

Quaternary Newer

alluvium

Clay, silt, sand Holocene 130.50

Older

alluvium

Polycyclic sequence of silt, clay

and sand with kankar

Early to Late

Pleistocene

–

Unconformity

Vindhyan

supergroup

Rewa

group

Shale and sandstone Meso to

Neoproterozoic

15

76

18

1

Kaimur

group

Quartzite Meso to

Neoproterozoic

Environ Geochem Health (2015) 37:157–180 161
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(high hydraulic conductivity) of the sand, silt, and

clay, the unconsolidated aquifer systems are more

susceptible to pollution. The unconsolidated aquifer

needs special attention during pollutant removal.

River channel and floodplain deposits

River Ganga and River Yamuna are the two main

rivers that along with a number of tributaries transport

a large amount of silt, clay, and sand in the basin. The

rivers are considered as good zones for groundwater

recharge. The Ganga and the Yamuna rivers change

their courses over a period of time and formed palaeo-

channel that has good prospects of groundwater. The

river channels are responsible for bringing a high

amount of diffuse pollutants from upstream areas.

Generally, near to the river system, their low-lying

area bordering a stream is covered by coarse and fine

sand, clay, and silt, which are directly deposited at the

time of floods. The floodplain deposits are developed

at the constructive side of river channels.

Hydrogeology

Geologically, the age of the Quaternary alluvium and

the Vindhyan Plateau ranges from Proterozoic to

recent. Quartzite of Kaimur group forms the basement

in the area which is unconformably overlain by

Quaternary alluvium. In the unconsolidated or alluvial

formation, groundwater occurs under unconfined to

confined conditions in the shallow and deeper aqui-

fers, respectively, and depth to water ranges between 2

and 20 m during pre-monsoon period, while in the

post-monsoon period, it stands between 1 and 18 m. In

the consolidated formation (Vindhyans), water table

ranges between 3 and 10 m below ground level (mbgl)

during pre-monsoon period and 2–8 mbgl during post-

monsoon period with seasonal fluctuation ranges

between 1 and 4 m. The borehole data give informa-

tion about the subsurface geological formations. The

surface lithology in Trans-Ganga and Trans-Yamuna

region has distinct characteristic. The alluvium plain is

classified as Younger and Older alluvial plain. Older

alluvium is again classified into two subdivisions (1)

Banda Older alluvium and (2) Varanasi alluvium.

Subsurface geological characters of hard rock area of

Vindhyan region are quite distinct from Trans-Ganga

area.

Hydrogeological setup

Groundwater exploration studies reveal three-tier aqui-

fer systems in the alluvial area that have distinct

granular zones, they are as follows: (1) shallow aquifers

(I Aquifer Group) ranging from 0.0 to 110 mbgl; (2)

middle aquifer (II Aquifer Group) ranging from 120 to

250 mbgl (meter below ground level); and (3) deeper

aquifer (III Aquifer Group) lying below 260 down to

depth 400 mbgl. The aquifer material is medium- to

coarse-grained sand admixed with gravel at places. The

tube well in alluvium thickness yield is of

2,000–3,000 lpm (liter per minute) while the tube well

in Vindhyans region, fractures zones, exists down to 125

meters only and yield is of 500–1,000 lpm; within this

sandstone domain, a silica sand horizon exists having a

thickness of 5–40 m which also contains groundwater.

Field and laboratory analysis

Field samplings were taken place during the period

from 2011 to 2013 (total 120 water samples). The

selected sites were carefully chosen and fixed by

global positioning system (GPS) (Garmin Model

780). From the periods 2011–2013, during pre-

monsoon and post-monsoon seasons, a total of 60

groundwater samples from each year were collected

in polypropylene bottles. All the groundwater sam-

ples are collected from the Ganga basin (Allahabad

district), i.e., the alluvial and nonalluvial parts of the

study area. Stratified random samplings were per-

formed to ensure that all areas are covered. A total of

20 blocks were selected in this study on the basis of

population density maintaining the same depths

during each of the seasons. With the help of GPS,

the sampling points were recorded in Universal

Transverse Mercator projection along with the WGS

1984 coordinate system so that similar sites were

sampled during next visits. Higher number of

groundwater sample was collected from the denser

areas, and therefore, maximum number of samples

was collected from the Chaka block that consists of

wards such as Shantipuram, Bamraulli, Jhusi, Sashon,

and Teliyar Ganj. The sampling sites provide the data

reported in this paper and are shown in Fig. 1.

Collected samples are divided into three aliquots for

subsequent analysis. After the appropriate preserva-

tion, all samples are stored at 4 �C until analyses.

Collection and analyses are performed as specified in

162 Environ Geochem Health (2015) 37:157–180
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the standard international methods (APHA 1998).

The instrumentations used for the analysis remain

same throughout the study periods to avoid any

uncertainties and error in water quality analysis. Total

alkalinity (as HCO3
-) and physical parameters such

as electrical conductivity (EC), total dissolved solids

(TDS), and pH are measured in the field. Alkalinity

is measured using a Hach field titration kit (through

titration with 0.1 M HCl). The samples were acidified

using conc. nitric for cation analysis. The major

cations are (Mg2?, Ca2?, Na?, K?) analyzed using

an atomic absorption spectrometer, and the F– anions

are analyzed using an ion chromatograph. Bicarbon-

ate (HCO3
-) is determined by titration method as

described in the standard methods for the examina-

tion of water and wastewater (APHA 1998). Major

anions (Cl-, SO4
2-, NO3

-) for groundwater samples

are undertaken by ion chromatography. The precision

and accuracy of the analyses are within 5 % (eval-

uated through repeated analyses of standards and

samples).

Remote sensing and GIS implementation

The land-use/land-cover classification of the area has

been estimated on ENVI version 4.8 platform using

the Landsat TM and ETM satellite data. The specifi-

cations about the satellite datasets used in this study

are represented through Table 2, which are used here

to accomplish the land-use/land-cover change. A

supervised classification technique (maximum likeli-

hood classification) as defined by Eq. 1 is used to

determine the LULC of the study area. Thus, seven

classes are delineated from the study area namely

agricultural land, built-up area, cultivable land, forest,

water body, wasteland, and other fallow land. Arc GIS

(9.3) software is used for the preparation of primary

thematic layers. The image projection parameters are

used as Universal Transverse Mercator, World Geo-

detic System 84 (WGS84), Zone 44 N coordinate

system. In this study, a post-classification change

detection method is applied in order to find out the

land-cover change over time. It requires the compar-

ison of independently produced classified images

(Banerjee and Srivastava 2013). The post-classifica-

tion comparison method proved to be the most

effective technique for comparing the changes

occurred in two dates (Banerjee and Srivastava

2014). Post-classification method is the most suitable

for detecting land-cover changes because it enables

the estimation of the amount, location, and nature of

change (Singh et al. 2014). This method separately

classifies multitemporal images into thematic maps

and implements the comparison of the classified

images on a pixel-by-pixel basis (Lu et al. 2004).

D ¼ lnðacÞ � 0:5 ln covcj jð Þ½ � � ½0:5ðX�McÞT
ðcovc � 1ÞðX�McÞ�

ð1Þ

where D is the weighted distance; c is a particular class;

X is the measurement vector of the particular pixel; Mc

is the mean vector of the sample of class; ac is percent

probability that any particular pixel is a member of

class c, (Defaults to 1.0); Covc is the covariance matrix

of the pixels in the sample of class c; |Covc| is the

determinant of Covc; Covc -1 is the inverse of Covc; ln

is natural logarithm function; and T = transposition

function. For the proper utility of classified images,

accuracy assessment is a much needed process. In

order to evaluate the performance of the MLC

classifiers, the accuracy assessment of the classified

images was provided using the ground control points,

assuring distribution in a rational pattern so that a

specific number of observations was assigned to each

category on the classified image. The Kappa accuracy

was computed, as given by Eq. 2 (Bishop et al. 1975).

j ¼ N
Pr

i¼1 Xii �
Pr

i¼1 xiþð Þ xþið Þ
N2 �

Pr
i¼1 xiþð Þ xþið Þ ð2Þ

where r is the number of rows in the matrix, Xii is the

number of observations in row i and column i (the

diagonal elements), x?i and xi? are the marginal totals

of row r and column i, respectively, and N is the

number of observations.

For GIS implementation, the Arc GIS version 9.3

was used for all the cartographic analysis and spatial

interpolations. Inverse distance-weighted (IDW) pro-

cedure is used for preparing spatial interpolation maps

based on water quality indices, which is a versatile,

easy to use program, and fairly accurate under a wide

range of conditions (Johnston et al. 2001) and used

when the set of point is dense enough to capture the

extent of local spatial variations (Srivastava et al.

2011). It is an exact method that enforces that the

estimated value of a point is influenced more by

Environ Geochem Health (2015) 37:157–180 163
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nearby points than those farther away (Chang 2002).

By applying this method, the property at each

unknown location for which a solution sought can be

expressed mathematically (Johnston et al. 2001; Mitas

and Mitasova 1999). The WQI obtained at the various

groundwater collection sites is interpolated to obtain

the index for the study area. The expression for IDW

can be depicted using the Eqs. 3, 4, and 5:

ẐðSoÞ ¼
Xn

i¼1

kiðSoÞZðSiÞ ð3Þ

ẐðSoÞ ¼ kT
o Z ð4Þ

kiðSoÞ ¼
1

dbðSo;SiÞPn
i¼ 0

1
dbðSo;ðSiÞ

; b [ 1 ð5Þ

where ki is the weight for neighbor i (the sum of

weights must be unity to ensure an unbiased interpo-

lator); d(So, Si) is the distance from the new point to a

known sampled point; b is a coefficient that is used to

adjust the weights; and n is the total number of points

in the neighborhood analysis.

Water quality indices estimation

Water quality index provides a clear picture about the

usability of water for different purposes such as

drinking, irrigation, and industrial usage. However, it

is difficult to simplify surface and groundwater quality

to a specific index because of its sensitive nature to

inputs received from sources such as geogenic contri-

bution, water–rock reactions, agricultural runoff,

domestic, and industrial wastes (Singh et al. 2012).

However, the WQI by (Tiwari and Mishra 1985) and

synthetic pollution index (SPI) (Ma et al. 2009) are very

useful and efficient methods for assessing the quality of

water and presently used by many scientists and water

managers. To determine the suitability of the water for

drinking purposes, WQI can be estimated by using the

following methodology:

WQI ¼ Anti log
Xn

i¼1

Wi log10 qi

" #

ð6Þ

where Wi is the weighting factor computed using the

Eq. 7

Wi ¼ K=Si ð7Þ

K is proportionality constant derived from Eq. 8

K ¼ 1

Pn

i¼1

1=Si

� �

2

6
6
4

3

7
7
5 ð8Þ

where Si is the World Health Organization (WHO

1984)/Indian Council Medical Research (ICMR 1975)

standard values of the water quality parameter.

Quality rating (q) is calculated using the formula

(Eq. 9),

qni ¼ Vactual � Videalð Þ= Vstandard � Videalð Þ½ � � 100

ð9Þ

where qni is the quality rating of ith parameter for a

total of n water quality parameters, Vactual is the value

of the water quality parameter obtained from labora-

tory analysis, Videal is the value obtained from the

standard tables, and Vstandard is Indian Standard

Institution (ISI) (ISI 1991) standard of the water

quality parameters (Table 3). The rating and category

chart for WQI is represented through Table 4.

Another index which can be used to integrate the

impact of various pollutants on the water quality is

synthetic pollution index (SPI) (Ma et al. 2009). This

approach is widely used because it provides a simpler

overview (Ouyang et al. 2006). The index is calculated

using the following Eqs. 10 and 11:

Pr ¼
Xn

i¼1

Pi ð10Þ

Pi ¼
Ci

Cio

ð11Þ

Table 2 Satellite datasets used in this study

Year Satellite/sensor Spatial

resolution (m)

Path/row Available band

combination

Date of acquisition

1990 Landsat, TM 30 p143 r042 and p143 r043 1, 2, 3, 4, 5, 6, 7 November 17, 1990 and October 16, 1990

2011 Landsat, ETM? 30 p143 r042 and p143 r043 1, 2, 3, 4, 5, 6, 7 October 18, 2011 and October 18, 2011

164 Environ Geochem Health (2015) 37:157–180
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where Pr is the synthetic pollution index, Pi is the

pollution index of pollutant i, Ci is the measured

concentration of pollutant i, Cio is the evaluation

criteria of pollutant i. The criteria used in monitoring

sections are from the corresponding standards in the

Water Quality Standard (BIS). The rating and category

chart for SPI is represented through Table 5.

X-ray diffraction technique (XRD)

The XRD method is ideal for the qualitative assessment

of mineralogy. Samples of\200 mesh size have been

used for the mineralogical studies of soil and sediments

to decipher the mineral assemblages, using XRD. The

XRD method explains the geometry or shape of

crystalline materials using X-rays, and is based on the

elastic scattering of X-rays from structures that have a

long-range order. The interaction of the incident rays

with the sample produces constructive interference

(and a diffracted ray) when the conditions satisfy

Bragg’s Law (Kacher et al. 2009; nk = 2d sin h). Here,

d is the spacing between diffracting planes, h is the

incident angle, n is any integer, and k is the wavelength

of the beam. This law relates the wavelength of

electromagnetic radiation to the diffraction angle and

the lattice spacing in a crystalline sample (Cole 1970).

These diffracted X-rays are then detected, processed,

and counted. Conversion of the diffraction peaks to d-

spacing allows identification of the mineral because

each mineral has a set of unique d-spacing. Typically,

this is achieved by comparison of d-spacing with the

standard reference patterns (Moore and Reynolds Jr

1989). To estimate the geogenic contribution of ions to

groundwater, soil and sediments samples are analyzed

on a XRD machine at Sophisticated Analytical Instru-

mentation Facility (SAIF), Chandigarh, Punjab, India

laboratory, to uncover the mineralogical properties of

the area.

Multivariate statistical method

The application of multivariate statistical method is

very useful for classification, modeling, and interpre-

tation of large datasets which allow the reduction in

dimensionality of the large datasets (Singh et al.

2005). CA and FA/PCA techniques are applied for

multivariate analysis of datasets of groundwater

quality. In CA analysis, it groups the objects (cases)

into classes (clusters) on the basis of similarities/

dissimilarities within or between classes (Singh et al.

2009), respectively. CA in this study is used to see the

pattern in the datasets implemented using hierarchical

agglomerative clustering technique by means of the

Table 3 Different standards given by Indian Standard Institute

(ISI), WHO, and ICMR with their permissible and desirable

limits

Parameter ISI highest

desirable b

(Videal, mg/

L)

ISI

maximum

permissible

(Vstandard,

mg/L)

ICMR/WHO

standards

(Sn)

pH 7 8.5 8.5

BOD 4 6 5

COD 10 15 14.5

Electric

conductivity (lS/

cm)

1,000 2,250 600

Total hardness 500 1,500 1,000

Fluoride 0.6 1.2 1

Chloride 250 1,000 250

Alkalinity 200 600 120

Sulfate 200 400 250

Nitrate 10 45 50

Calcium 75 200 75

Magnesium 30 100 75

Sodium 30 200 200

Potassium 20 100 100

Phosphate 0.001 0.05 1.5

Table 4 Rating and category chart of WQI

Sl. no. WQI Water quality

1 0–25 Suitable

2 26–50 Polluted

3 51–75 Moderately polluted

4 76–100 Highly polluted

5 [100 Unfit

Table 5 Rating and category chart of SPI

Sl. no. Synthetic pollution index (SPI) Category pollution

1 \0.5 Suitable

2 0.5–3 Polluted

3 3–5 Moderately polluted

4 5–10 Highly polluted

5 [10 Unfit
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squared Euclidean distances following Ward’s method

(Srivastava et al. 2012b). PCA is applied after

standardizing the datasets through the z-scale trans-

formation to avoid any misclassification (Krishna et al.

2009). The principal component (PC) is expressed as

(Eq. 12):

zij ¼ ai1x1j þ ai2x2j þ ai3x3j þ � � � þ aimxmj ð12Þ

where a is the component loading, z the component

score, x the measured value of a variable, i the

component number, j the sample number, and m the

total number of variables. The FA analysis attempts to

reduce the contribution of less significant variables

obtained from PCA and the new group of variables

known as varifactors (VFs). VFs are extracted through

rotating the axis defined by PCA. In FA, the basic

concept is expressed in Eq. 13,

zji ¼ af 1f1i þ af 2f2i þ af 3f3i þ � � � þ afmfmi þ efi ð13Þ

where z is the measured value of a variable, a the factor

loading, f the factor score, e the residual term

accounting for errors or other sources of variation,

i the sample number, j the variable number, and m the

total number of factors.

Results and discussion

Hydrochemistry of groundwater

The descriptive statistics of 12 physicochemical param-

eters at the 30 locations of groundwater of the Ganga

River Basin during the pre- and post-monsoon are given

in Table 6. They present the univariate overview of the

chemistry of groundwater in the area. The mean pH

(potential hydrogen) values of the 30 locations showed

very little variation in both the pre- and post-monsoon

seasons, ranging from 7.30 to 7.40, respectively, imply-

ing slight alkalinity of groundwater. The highest pH of

7.9 and 8.01 is reported in Urwa both during pre- and

post-monsoon. This may be the result of the industrial

and agricultural activities in the region. The mean

electrical conductivity is 829 lS/cm and 891.07 lS/cm

during both pre- and post-monsoons. Highest EC

1289 lS/cm is reported at Babu Ganj in pre-monsoon

samples and 1,805 lS/cm at Shankargarh samples in

post-monsoon season. The mean TDS values are 718 and

671 mg/l in pre- and post-monsoon, respectively. The

highest values of TDS are 1,242 and 1,364 mg/l at

Babuganj in both pre- and post-monsoon seasons

respectively. The mean fluoride value are 0.55 and

0.71 mg/l in pre- and post-monsoon seasons. The highest

value of fluoride is 1.3 mg/l at Karchhana during pre-

monsoon and 1.65 mg/l at Holagarh during post-mon-

soon. The mean chloride values are 102 and 91.23 mg/l

in pre- and post-monsoon seasons, and highest value of

chloride in pre-monsoon is the value 216 mg/l at

Shantipuram and in post-monsoon, the value is

280 mg/l recorded at Phoolpur. The mean values of

bicarbonate are 366 and 340.36 mg/l in pre- and post-

monsoon seasons. The highest value of bicarbonate

value is 596 mg/l in pre-monsoon and value is 534 mg/l

in post-monsoon at Babu Ganj, respectively. The mean

values of sulfate are 64.7 and 71.7 mg/l in pre- and post-

monsoon, and highest value is 189 mg/l in Phoolpur and

196 mg/l in Babuganj during pre- and post-monsoon,

respectively. The mean values of nitrate are 0.77 and

0.62 mg/l in pre- and post-monsoon seasons with highest

values 1.12 mg/l at Pandeora and 0.98 mg/l at Mobiya

mod. The mean values of calcium are 39.5 and 19.6 mg/l

in pre- and post-monsoon seasons, and the highest values

of 69 and 514 mg/l are recorded at Bamraulli and Teliyar

Ganj. The mean values of magnesium are 54.9 and

37.96 mg/l in pre- and post-monsoon seasons, respec-

tively, and the highest values of 127 and 108 mg/l are

recorded at Babu Ganj in both the seasons. The mean

values of sodium are 75.6 and 96.53 mg/l in pre- and

post-monsoon seasons with the highest value of

137 mg/l at Kaundhiyara and 221 mg/l at Mobiya

Mod. The mean values of potassium are 13.7 and

12.16 mg/l in pre- and post-monsoon seasons with

highest values of 56 mg/l at Bamraulli and 55 mg/l at

Teliyar Ganj. There is no block in the district identified

as clean area as nearly on all site above permissible limit

of water quality parameters are recorded.

Water Quality Index (WQI) and Synthetic

Pollution Index (SPI)

Water quality index values and synthetic pollution

index are computed for groundwater. The WQI table of

different stations for groundwater is indicated in

Table 7 estimated using the water quality index equa-

tions given in ‘‘Water quality indices estimation’’

section. All the values calculated are explicitly higher

than the limits given in ‘‘Water quality indices estima-

tion’’ section, indicating very high pollution status of the

groundwater during the monsoon period. Through the
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application of GIS and spatial interpolation method

(IDW), pollution zone categorization of groundwater

can be provided for better management of water

resources. These interpolation maps are created for

pre- and post-monsoon seasons separately to see the

seasonal effects. The analysis indicates that the maxi-

mum (max) (14.14) and minimum (min) (6.54) value of

synthetic pollution index is reported at site number 9

and at site number 19, respectively, with standard

deviation of 1.67 in pre-monsoon season. The maxi-

mum (14.75) and minimum (5.11) value of synthetic

pollution index during post-monsoon is reported with a

standard deviation of 2.51. The average value of

synthetic pollution index of groundwater during pre-

monsoon is 9.27, and in post-monsoon, it is recorded as

8.74. This suggests that the average number of ground-

water samples has more pollution during the pre-

monsoon condition as compared to post-monsoon. The

maximum (1,182.6) and minimum (8.92) value of water

quality index is reported at site number 20 and at site

number 25, respectively. The average value of water

quality index of groundwater during pre-monsoon and

post-monsoon seasons is 217.59 and 233.02. All the

analysis suggests that groundwater lies in the category

of highly polluted water.

LULC- and GIS-based assessment of groundwater

quality

Land-use and land-cover change analysis (Fig. 2) of

the study area has been achieved through Landsat

satellite image after classification. On the basis of the

overall accuracy results (OA), it can be seen that the

highest accuracy was achieved for the year 2011

classified image (89.05 %) followed by 1990

(85.39 %) satellite images. The accuracy assessment

results indicate that the land-use changes have been

accurately identified and extracted after classification

during two periods, confirmed by the reasonable

overall accuracies values. The data presented in

Table 8 represent the area of each land-use and land-

cover category of the different years. The change

detection results show that the seven land-use catego-

ries (cultivable land, forest, built-up area, other fallow

land, agriculture, wasteland, and water body) have

changed significantly in the study area during the last

20-year period. The land-use patterns in the district are

changing slowly but steadily. Specifically, the built-up

area increases from 555.89 km2 in 1990 to 744.16 km2

in 2011 with a percentage increase of 33.87 %. This

increase has probably taken place due to the migration

of population toward Allahabad due to better educa-

tional activities, business opportunity, and availability

of better urban infrastructure facility. The total area of

cultivable land decreases from 246.19 km2 in 1990 to

116.97 km2 in 2011 with a percentage decrease of

52.49 %. The decrease may be mainly due to expansion

in urban area. The area of other fallow land decreased

from 186.04 km2 in 1990 to 125.88 km2 in 2011 with a

percentage decrease of 32.34 %, which can be attrib-

uted to urbanization, some reforestation, and industrial

activities. Some change in water body class is found to

Table 6 Physicochemical

properties of the

groundwater samples during

the two seasons (except EC

all other parameters units

are in mg/l and EC units is

lS/cm)

Pre-monsoon season Post-monsoon season

Parameter Min Max Average Min Max Average

pH 6.80 7.90 7.30 8.01 7.04 7.40

EC 545.00 1,289.00 829.23 1,805.00 476.00 891.07

TDS 425.83 1,242.23 717.65 1,364.31 352.96 670.91

F- 0.12 1.30 0.55 1.65 0.21 0.71

Cl- 16.00 216.00 102.30 280.00 17.00 91.23

HCO3
- 203.00 596.00 365.60 534.00 157.00 340.37

SO4
2- 16.00 189.00 64.73 196.00 16.00 71.70

NO3
- 0.25 1.12 0.77 0.98 0.11 0.63

Ca2? 26.00 69.00 39.50 51.00 8.00 19.60

Mg2? 19.00 127.00 54.87 108.00 12.00 37.97

Na? 16.00 137.00 75.63 221.00 13.00 96.53

K? 3.00 56.00 13.70 55.00 2.00 12.17
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be 328.08 km2 in 1990, decreased to 298.00 km2 in

2011 with a percentage decrease of 9.17 %. This

decrease in water body is due to unplanned use of water

and may be due to climate change. The forest area is

335.87 km2 in 1990, which decreased to 311.92 km2 in

2011 indicating a percentage decrease of 7.13 %. This

decrease can be attributed to some deforestation

activities. There is a change seen in the agriculture

area, which increased from 3,638.40 km2 in 1990 to

3,793.25 km2 in 2011 with a percentage increase of

4.26 % that can be attributed to decrease in fallow and

wasteland. The area of wasteland has shown a declining

trend from 1990 to 2011, and in year 1990, it is

279.62 km2, which decreases to 179.91 km2 in two

decades with percentage change of 35.66 %.

The impact of LULC changes on the water quality

of the area has been evaluated using the ‘‘best guess’’

method given by (Reynard et al. 2001; Srivastava et al.

2013) for future land-use change scenarios. A total of 6

cases are produced for detecting the impact of LULC

on groundwater quality. These cases are generated on

the change detection possibilities from the classified

images. All the possible substantial change cases in

LULC are considered in this study such as cultivable

land to built up (Case I), wasteland to agricultural land

(Case II), water body to built up (Case III), other

fallow land to built up (Case IV), fallow land to

agriculture (Case V), and fallow land to forest (Case

VI). To analyze the result more on a remote sensing

platform, DEM is also taken into account. DEM of the

Allahabad district (Fig. 3) is utilized in this study for

generating the slope. Slopes affect a lot the movement

of pollutants and show the direct influence of the

rainfall on the contaminant transport (Srivastava et al.

2012b). The wells at the highest location will gener-

ally have the safer water supply. The wells furthest

downslope would receive the combined effluent from

the other houses, industries as well as from agricultural

fields, because the liquid effluent follows the same

path as the surface runoff or snowmelt and hence

contaminates water more toward downside slopes

(Waller 2001). The high rainfall and associated runoff

in monsoon facilitate the movement of contaminants

and affect the post-monsoon season water quality. The

analysis of DEM and surface elevation map suggests

that, in general, the surface runoff movement is toward

northwest direction. Hence, the stations on the down

slope receive higher pollutants after rainfall than

upstream stations due to runoff. Most of the regions in

the northwest downstream are well occupied by urban

population and are already categorized as polluted

because of high WQI and SPI values. The runoff from

high altitude could be an additional possible source of

pollutants in these regions.

The GIS-interpolated figures (Fig. 4) are used to

visualize the cartographic influence of the water

quality in area. The analysis indicates that none of

the area is in the category under excellent class. WQI

indicates that large areas are found above the limit of

100 indicating that the large percentage of water is

Table 7 WQI and SPI values estimated during the two

seasons

Site Pre-monsoon

(WQI)

Post-monsoon

(WQI)

Pre-monsoon

(SPI)

Post-monsoon

(SPI)

Site1 352.30 39.36 8.29 10.33

Site2 351.89 27.92 9.59 11.29

Site3 238.44 83.91 8.45 7.59

Site4 152.08 68.56 8.87 8.09

Site5 141.98 92.03 6.94 5.84

Site6 374.67 100.04 7.04 5.79

Site7 180.32 98.91 9.10 9.05

Site8 163.30 109.19 9.02 8.53

Site9 381.56 88.92 14.14 14.75

Site10 248.98 40.41 12.84 14.64

Site11 60.00 21.01 10.71 9.62

Site12 8.24 131.29 10.48 10.25

Site13 414.61 125.40 8.23 5.78

Site14 370.72 242.44 7.86 5.76

Site15 19.50 221.56 10.37 12.41

Site16 44.77 103.57 10.59 12.40

Site17 616.80 139.39 9.93 10.91

Site18 192.54 318.84 8.75 9.92

Site19 36.89 331.24 6.54 5.11

Site20 16.32 1,182.60 6.70 7.40

Site21 123.57 945.33 9.29 8.52

Site22 106.82 130.71 9.57 8.11

Site23 141.81 100.09 10.02 7.20

Site24 141.45 32.16 10.63 6.48

Site25 509.47 8.92 10.58 7.64

Site26 619.19 105.33 9.85 7.52

Site27 121.75 1,118.76 7.80 6.83

Site28 106.27 928.11 8.41 7.90

Site29 143.88 21.65 9.00 8.79

Site30 147.46 33.01 8.65 7.73

Max 619.19 1,182.6 14.14 14.75

Min 8.24 8.92 6.54 5.11

Avg 217.59 233.02 9.27 8.74

SD 170.97 335.47 1.67 2.51
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Fig. 2 Land use/land cover of the study area estimated during the year 1990–2011
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unfit for drinking. Only a very small percentage of the

area is found suitable for drinking water. The WQI

values in the pre-monsoon season indicate that the

Koraon, Naini, and Bahariya stations are found as the

most contaminated and groundwater over here is

nearly unfit for drinking. These areas are mostly

Table 8 Land-use and

land-cover change

distribution from 1990 to

2011

LULC

categories

AREA in 1990

(km2)

AREA in 2011

(km2)

1990–2011

(km2)

%Difference

Forest 335.87 311.92 -23.95 -7.13

Wasteland 279.62 179.91 -99.71 -35.66

Built-up area 555.89 744.16 188.27 33.87

Cultivable land 246.19 116.97 -129.22 -52.49

Agriculture 3,638.40 3,793.25 154.85 4.26

Water body 328.08 298.00 -30.08 -9.17

Other fallow

land

186.04 125.88 -60.16 -32.34

Fig. 3 Digital elevation

model (DEM) of the area
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affected by agricultural and industrial practices (pos-

sible LULC Case I and Case IV). High agricultural

influence is found in the areas considered under highly

polluted zone (possible LULC Case II and Case V).

The surrounding areas such as Shantipuram, Jhusi,

Babuganj, and Karchhana are also found polluted with

Fig. 4 Spatial interpolation of the WQI and SPI over the region
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moderate level of pollutant load (possible LULC Case

IV). Rest of the stations has a limited influence with

the discharge from agricultural fields, industrial, and

domestic area (possible LULC Cases II, III, and IV).

The suitable areas which are found good for drinking

water extraction with very low level of pollution are

Taliyar Ganj, Bamrauli, Urwa, Pandeora, Meja, and

Mobiya mod (possible LULC Case VI). However, in

post-monsoon season, a different pattern is obtained

with some stations such as Urwa and Pandeora that are

good area for ground extraction but after monsoon,

they moved to highly contaminated area. It may be

ascribe to high leaching nitrate- and phosphate-based

ions in the water and indicate that these sites come

under shallow to slightly deep aquifer category. On the

other hand, with Koraon, its groundwater quality gets

improved in post-monsoon season, which may be

because of high infiltration of freshwater in the

groundwater well. Some areas such a Shantipuram,

Jhusi, Babuganj, and Karchhana, which are in mod-

erately polluted zone, are now in suitable category in

post-monsoon season. To understand the results more

clearly, a different map between pre- and post-

monsoon seasons is prepared to see which areas

undergo most notable changes. The result shows that

the maximum changes are found with the sites Urwa,

Pandeora, and Soraon in the post-monsoon season.

Nearly 50 % of areas are remained unchanged from

pre- to post-monsoon seasons. Some of the areas such

as Mau Aima, Bahariya, Jhusi, Jasra, and Karchhna do

not changed much during the post-monsoon season.

To assess the performance of groundwater quality

for irrigation purposes, SPI is calculated for the area

and depicted through spatially interpolated plots. The

analysis indicates that in pre-monsoon season, the

Phoolpur area is not fit for irrigation purpose

followed by Bahariya, Jasra, Bamrauli, Taliyar Ganj,

Bahadurpur, Karchhna, and Koraon. The areas such

as Handia, Urwa, Meja, and Soraon are found

suitable for agricultural purposes. Rest of the area

is found polluted for irrigation purpose. In post-

monsoon season, the Phoolpur remains unfit for the

irrigation purpose along with one more addition, i.e.,

Mobiya mod. The stations such as Babuganj, Jhusi,

Koraon, and Bamrauli come under moderately pol-

luted category in post-monsoon season. Some stations

such as Bahadurpur, Soraon, Shantipuram, Jasra,

Meja, Urwa, and Handia are found suitable in post-

monsoon season for irrigation purposes. Rest of the

stations is found in the category polluted for

irrigation purposes. To see the maximum changes

in SPI during the seasonal transition, a different map

is generated, which indicates that Phoolpur has

undergone maximum changes from pre- to post-

monsoon season along with the stations such as

Babuganj, Jhusi, Koraon, and Mobiya mod. Three

stations Bahadurpur, Bahariya, and Jasra indicate a

substantially higher value in pre-monsoon season

than post-monsoon season. Owing to excess extrac-

tion of groundwater, harmful substances are getting

concentrated and affecting the quality of water. Rest

of the areas shows nearly no significant changes from

pre- to post-monsoon season transition.

Geogenic contribution and XRD estimates

The weathering and dissolution of minerals can be

used to see the contribution from the geogenic sources

into the groundwater. To estimate the possible sources

of ions from rock weathering, XRD analysis is taken

into account. The soil and sediment samples are

analyzed on XRD (PANalytical), and the information

about the minerals present is obtained through X’pert

High Score Plus software. The analysis by XRD

indicates the presence of muscovite, plagioclase,

orthoclase, vermiculite, calcite, halite, and dolomite

along with major mineral quartz (Fig. 5). Among the

sampling locations, the minerals quartz, muscovite,

plagioclase, orthoclase, and vermiculite are found

dominant at sampling site 1. At site 7, quartz,

muscovite, plagioclase, orthoclase, and calcite and at

site 8 quartz, muscovite, plagioclase, orthoclase, and

halite are detected in the XRD spectra. The sites 23

and 30 indicate the presence of minerals such as

quartz, muscovite, plagioclase, orthoclase, calcite, and

dolomite. At the sites 2-12, 18, 20, 21, 22, 25, 26, and

cFig. 5 XRD estimates of soil mineralogy a quartz, muscovite,

plagioclase, orthoclase, vermiculite at location Bahadurpur;

b quartz, muscovite, plagioclase, orthoclase at locations Soraon,

Mobiya mode (Nari Bari), Jasra, Koraon, Jhusi, Naini,

Karchhana, Urwa, Pandeora, Habibpur, Bahariya, Teliar Ganj,

Hanuman Ganj, Babu Ganj, and Holagarh; c quartz, muscovite,

plagioclase, orthoclase, calcite at locations Bamraulli, Saraye

Inayat, Shankargarh, and Bara Thesil; d quartz, muscovite,

plagioclase, orthoclase, halite at locations Kaundhiyara;

e quartz, muscovite, orthoclase at locations Meja, Manda,

Sahson; f quartz, muscovite at locations Handia and Phulpur;

g quartz, muscovite, plagioclase, orthoclase, calcite, dolomite at

locations Shantipuram and Andava mode
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28, the minerals such as quartz, muscovite, plagio-

clase, and orthoclase are found dominant. At two sites

13 and 14, a total of three minerals such as quartz,

muscovite, and orthoclase are found dominant with

some visible peak in the spectral analysis. At the sites

15 and 16, the minerals such as quartz and muscovite

in the samples are detected. At the sites 24, 27, 29,

minerals such as quartz, muscovite, plagioclase,

orthoclase, and calcite are detected. The overall

analysis of the XRD results suggested the presence

of quartz and muscovite minerals nearly on all sites.

The main agent responsible for chemical weathering

reactions of above-mentioned minerals is water and weak

acids formed in water. The most stable mineral is quartz,

which does not chemically weathers but only abrades into

smaller grains of quartz (Bennett and Siegel 1987). The

main reaction for chemical weathering includes hydro-

lysis, oxidation, dissolution, and acidolysis. (Chamley

1989). The decomposition of primary minerals leads to

the formation of secondary mineral reactions, which are

ultimately responsible for the release of ions into the

water. The most common weak acid is carbonic acid,

which is available almost everywhere, produced by the

reaction of the rainwater with carbon dioxide (CO2) gas in

the atmosphere (Meybeck 1987). During the breakdown

process, carbonic acid H? and bicarbonates are produced.

The free H? is a small ion and can easily enter crystal

structures, responsible for weathering of other minerals in

the soil–rock–water interface (Nesbitt and Young 1984).

For example, the weathering of orthoclase produces K?,

kaolinite, and quartz in the soil, and similar reaction are

also found with muscovite, which may be the reason for

some geogenic contribution of K? into the groundwater.

Over here, hydrolysis is a dominant phenomenon for

weathering of orthoclase mineral (Clayton 1988). Due to

the replacement of potassium, ions in the presence of

water are either by H? or OH- ions. The K? ions are

removed by dissolution into water and moved down to the

aquifers; the process can be referred as leaching. The

decomposition of carbonic acid, orthoclase, and musco-

vite generally follows the reactions:

H2Oþ CO2 ! H2CO3 ! Hþ þ HCO�3

4KAlSi3O8 þ 4Hþ þ 2H2O! 4Kþ

þ Al4Si4O10ðOHÞ8 þ 8SiO2

Orthoclase Hydrogen ion Water Potassiumion

Kaolinite ðclay mineralÞ Quartz

2KAl3Si3O10ðOHÞ2 þ 2Hþ þ 3H2O !
3Al2Si2O5ðOHÞ4 þ Kþ

Muscovite Hydrogen ion Water Kaolinite ða clayÞ
Potassium ions

Table 9 Rotated component matrix of (a) pre-monsoon and

(b) post-monsoon (varimax with Kaiser normalization)

Variables Components

1 2 3

(a)

pH -.850 -.331 .019

EC .788 .511 .074

TDS .815 .563 -.044

F- .005 -.106 .930

Cl- .246 .693 .085

HCO3
- .840 .040 -.022

SO4
2- .564 .601 -.123

NO3
- .770 .043 .241

Ca2? -.043 .684 .541

Mg2? .621 .619 -.026

Na? .812 -.082 -.156

K? -.053 .915 -.262

Eigenvalue 4.736 3.239 1.339

Variance % 39.466 26.988 11.159

Cumulative variance 39.466 66.453 77.613

Variables Components

1 2 3 4

(b)

pH -.216 -.699 .081 .318

EC .918 .288 .003 -.092

TDS .865 .462 .169 -.050

F- -.196 -.137 -.093 .905

Cl- .546 .731 .271 .066

HCO3
- .918 .140 .002 -.166

SO4
2- .560 .618 .337 .226

NO3
- .108 .747 -.034 -.238

Ca2? -.134 .127 .813 -.020

Mg2? .397 .711 .175 .224

Na? .892 .230 -.185 -.150

K? .124 -.018 .885 -.056

Eigenvalue 4.129 2.872 1.741 1.146

Variance % 34.409 23.931 14.504 9.554

Cumulative variance 34.409 58.341 72.845 82.399
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Fig. 6 Dendrogram

representing a WQI of pre-

and post-monsoon seasons,

b SPI of pre- and post-

monsoon seasons
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The other minerals which are good source of Ca2?

ions are calcite, plagioclase, and dolomite. These

minerals are also weathered due to carbonic acid

reaction. The weathering of calcite by carbonic acid

produces Ca2? ion as well as bicarbonate. However,

the weathering of calcium plagioclase produces a

mixture of kaolinite, Ca2?, and bicarbonate. On the

other hand, the dolomite weathering produces both

Ca2? and Mg2? in the water, as this mineral is

composed of both Mg2? and Ca2?.

CaCO3 þ H2CO3 ! Ca2þ þ 2ðHCO3Þ�

Calcite Cabonic acid Calcium ion Bicarbonate ions

CaAl2Si2O8 þ 2Hþ þ H2O ! Al2Si2O5ðOHÞ2�4
þ Ca2þPlagioclase Hydrogen ion Water

Kaolinite ða clayÞ Calcium ions

CaMgCO3 þ H2O! Ca2þ þMg2þ

þ 2HCO�3 þ 2OH�Dolomite Water Calcium ions

Magnessium ions Bicarbonate ions Hydroxyl ions

SiO2 þ 2H2O! H4SiO4

Quartz

Dissolution is a process whereby a mineral passes

completely into solution, like salt dissolving in water

(Stallard and Edmond 1987). A complete dissolution

of halite minerals generally occurs, which releases the

Na? and Cl- in the water. Similarly, sodium plagio-

clase which is an important source of Kaolinite, silica,

and Na? is also weathered due to hydrolysis and H?.

NaCl! Naþ þ Cl�

Halite Sodium Chloride

2NaAlSi3O8 þ 2Hþ þ H2O! Al2Si2O5ðOHÞ4
þ 4SiO2 þ NaþPlagioclase Hydrogen ion Water

Kaolinite ða clayÞ Silica Sodium ion

Multivariate statistical techniques

The multivariate statistical analysis involves PCA/FA

and CA. The results of PCA are indicated in Table 9a,

b. In the pre-monsoon season, three principal compo-

nents are extracted. The first PC, accounting for

*39.46 % of total variance, is correlated with

representing influences from point sources such as

municipal and industrial effluents and soil leaching.

This factor is characterized by very high loadings of

EC, TDS, sodium, magnesium, bicarbonate, nitrate,

and sulfate and thus, accounting for the temporary

hardness of the water. The second factor (which

accounts for 26.98 % of the total variance) is mainly

associated with very high loading of EC, TDS,

chloride, sulfate, and cations. The analysis of second

component represents the influences from point

sources such as from industries. The third PC shows

high loading of fluoride and calcium. This factor

(*11.15 % variance) probably represents geogenic

contribution (XRD detected calcite, dolomite, and

fluorite) (Table 9a, b). In the post-monsoon season,

four components are extracted in which the first PC,

accounting for *34.40 % of the total variance, is

correlated with representing influences from point

sources such as municipal (possibly laundry indus-

tries) and industrial effluents. This factor is character-

ized by very high loadings of EC, TDS, chloride,

bicarbonate and sulfate, and sodium and, thus,

accounts for the salinity of the water. The second

factor (which accounts for 23.931 % of the total

variance) is mainly associated with the very high

loading of chloride, sulfate, nitrate, and magnesium.

The analysis of the second component represents

influences from nonpoint sources such as agriculture

runoff. The third PC (*14.50 % variance) is influ-

enced by calcium, and potassium represents the

laundry influence on groundwater. However, over

here, the contribution from geogenic sources also

cannot be denied (in XRD calcite and dolomite are

detected). The fourth PC 9.55 % shows the loading of

fluoride only, which represents pollution from pesti-

cide industries and from geogenic sources, and in

XRD, some fluorite sources are also detected (see

section).

Cluster analysis has been used in this study to

identify the similar groups between the sampling sites.

The datasets are treated with hierarchical agglomer-

ative clustering following the Ward’s methods with

Euclidean distance for measuring of similarity. A

dendrogram rendered by CA is represented through

Fig. 6a, b. It can be seen that cluster analysis

successfully generates the distinct groups, and a

clear-cut class structure for characterizing the datasets

is formed. There are four clusters detected such as

GWQI1, GWQI2, GWQI3, and GWQI4 from ground
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WQI. This grouping gives evidence that some sites

have similar sources of pollution from point or

nonpoint sources. The dendrogram reveals that all

the stations in GWQI1 are similar in their behavior

during post-monsoon season; similarly, 3 stations in

GWQI2 are purely identified as pre-monsoon samples

with no matching properties with post-monsoon

samples. In cluster GWQI3, many samples in pre-

and post-monsoon seasons share the same properties,

indicating that they are influenced by similar types of

sources. From LULC, it appears that these areas are

mostly suffered from urbanized waste and agricultural

runoff. In cluster GWQI4, a mixed response obtained

with WQI shows that these stations are more or less

have similar sources of pollution. In this cluster, many

samples are from industrial area, urban as well as

agricultural land so a mixing of contamination cannot

be denied. These stations are mainly polluted due to

extensive agricultural and industrial activities fol-

lowed by domestic and municipal discharges.

In the case of SPI, a total of three clusters are

detected named as GSPI1, GSPI2, and GSPI3. The

cluster GSPI1 has mixed performance as some of

the stations are from pre-monsoon and other are

from post-monsoon season. These stations are

mainly polluted due to extensive agricultural and

industrial activities. The stations in GSPI2 cluster

are mostly from residential areas, and hence, that is

the reason they clustered in the same group with

respect to groundwater quality as they belong to the

same source of pollution from domestic and

municipal discharges. The cluster 3 (i.e., GSPI3

members) has the same irrigation quality because of

similar sources of pollution from runoff. In this

group, a high variability is obtained as the samples

belong to industrial sites, cultivable land, built-up

land, and agricultural land. Because of high alluvial

soil dominance in the area, a mixing of contaminant

cannot be denied. Over here, the samples suffered

from all sort of pollution such as industrial waste,

agricultural runoff, leaching from waste dumping

sites, and urban waste.

Suggestions and recommendations

The highly populated country like India is facing

scarcity of water. Good water quality and sufficient

amount is critical to the health of public as well as flora

and fauna dwellings in surroundings. In many ways,

groundwater is also getting contaminated and polluted

in many parts of India. Changes in water’s natural

quality are due to increase in levels of specific

nutrients, pesticides, fertilizers by-products and in

many other forms that can have serious negative

effects on human lives those who directly or indirectly

dependent on those contaminated and polluted water

resources. There are great challenges in front of

scientists and policy makers that how to minimize the

negative impacts, effects, and influences and how to

protect and conserve these vital resources judiciously.

To understand how changes in the groundwater quality

impact humans health, short- and long-term measures

of groundwater quality parameters are used together to

ensure that water quality will be properly evaluated for

human consumption. There is a need of development

of new rapid cost-effective in situ and ex situ testing

methods, which can be used to determine the quality of

water whether it is safe or unsafe. If the samples fall in

unsafe category, then proper restoration measure-

ments should be taken to prevent any losses to the

human or environment. The appropriate treatment

measures must be taken before releasing the effluent

and sewage waste in shallow aquifers. More studies

and tools are recommended for upstream basins to

monitor the sources of pollutant in groundwater. The

developed tools must allow water managers to predict

water quality problems and identify sources of pollu-

tion, so that they can take appropriate measures to

solve those problems.

There are many existing and new emerging issues

related with quality and quantity of groundwater but

need careful understanding. Therefore, it is recom-

mended that issue-based practices should be taken into

account for combating problems of groundwater. To

counter the rising trend, some of the pollutants in the

Trans-Gangetic basin, and to control and understand

the contamination of groundwater, the hard rock areas

should be surveyed by advanced and modern tech-

niques such as aeromagnetic and geophysical survey to

identify fractures present below 100 m depth. The

conventional methods like creation of check dams

could be used for the sites such as Shankargarh,

Koraon, Manda, Meja blocks of the study area to

control the urban runoff-induced pollutants in the

groundwater. Apart from alternative arrangement and

in quality problem are potable water pipeline project,

and the information, education and communication
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(IEC) methods are required to combat water quality

issues. The deep boring should be required in the

polluted areas. The cost-effective water testing kit

should be provided to the users for knowing the status

about the water used for drinking.

Conclusions

The utility of the WQI and SPI can be appreciated as

the water resources play a vital role in the development

of better society. Based on the analytical results

obtained from the laboratory, XRD, water quality

indices are applied to assess the groundwater quality of

the area and the case study proved that the proposed

WQI and SPI are very informative for long-term

monitoring of groundwater. The proposed WQI and

SPI clearly identify the type of water quality impair-

ment through the group quality system that helps in

initiating the immediate water pollution control

actions. The satellite imagery can be used to estimate

the land-use class and their change over a period of

time for relatively large area, and these changes can be

linked with the groundwater quality. From the results

of the interpretation of Landsat TM and ETM images,

the built-up area increased drastically from 1990 to

2011. Further, the land-use/land-cover analysis and

field survey in the study area illustrate a high influence

of domestic and agricultural waste during post-mon-

soon condition. The XRD results showed the presence

of many dominant minerals such as quartz, muscovite,

plagioclase, orthoclase, calcite, dolomite, halite, and

vermiculite in the soil samples. The physical and

chemical weathering of these minerals shows that the

ions present in groundwater have some components

from soil weathering. The study results reveal that the

leaching and runoff, municipal and industrial waste-

water, and waste disposal sites leaching are the main

factors responsible for groundwater quality deteriora-

tion with some geogenic contribution from soil and

rock weathering confirmed through XRD analysis.
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